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Groove instabilities in surface growth with diffusion
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The existence of a grooved phase in linear and nonlinear models of surface growth with horizontal
diffusion is studied in d =2 and 3 dimensions. We show that the presence of a macroscopic groove, i.e.,
an instability towards the creation of large slopes and the existence of a diverging persistence length in
the steady state, does not require higher-order nonlinearities but is a consequence of the fact that the
roughness exponent a>1 for these models. This implies anomalous behavior for the scaling of the
height-difference correlation function G(x)=<(|h(x)—h(0)|?) which is explicitly calculated for the
linear diffusion equation with noise in d =2 and 3 dimensions. The results of numerical simulations of
continuum equations and discrete models are also presented and compared with relevant models.

PACS number(s): 68.10.Jy, 64.60.Ht, 68.55.—a

Recently, there has been considerable effort in under-
standing the dynamics of growing surfaces [1]. Much of
this interest and activity is based on the recognition that
surface fluctuations exhibit scaling behavior in both time
and space. In particular, assuming an initially flat inter-
face, the scaling of the interface width is expected to be of
the form [2] w(L,t)=L%f (t/L?), where w(L,t) is the in-
terface width on length scale L at time ¢, z=a /B is the
dynamic exponent, and the scaling function f (x)~x? for
x << 1 and f(x)—const for x >>1. In an effort to under-
stand the early-time morphology of thin-film growth such
as molecular-beam epitaxy (MBE), considerable effort has
been concentrated on the study of models in which sur-
face diffusion as well as deposition (shot) noise were in-
cluded [3-6].

Recently, Siegert and Plischke [7] considered a model
corresponding to surface diffusion with deposition noise
for which the Langevin equation [for a (d—1)-
dimensional surface in d dimensions] may be written,
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is the Laplacian operator along the surface, and the
Ginzburg-Landau functional was taken as the free energy
of the drumhead model, F = [d?"'xoVg, g =1+(Vh)?
with  (n(x,t)n(x’,t'))=2D&% " Yx —x')8(t —¢'). For
this model they pointed out that all nonlinear terms
(powers of |Vh|) are relevant for d =2 and are marginal
in d =3. Following this observation, they studied a
discrete model of surface deposition with horizontal
diffusion, which they believed corresponded to Eq. (1).
For the case in which a fourth-order nonlinearity (|V4 |*)
was included in the Hamiltonian for this model (g,70)
in d =1+ 1 dimensions, an interesting breakdown of scal-
ing of the structure factor S (k) was observed in addition
to the formation of a grooved surface for which the ex-
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ponent a governing the scaling of saturation width with
system size L was approximately 3.6. This behavior was
compared with that of the |VA|? case (g, =0, a=1.2) for
which no breakdown of structure factor scaling was ob-
served, which was characterized as being in a “rough”
rather than a grooved state.

In this article, we point out that while there is no
breakdown in the scaling of the structure factor as in the
nonlinear model, a grooved state at saturation (defined as
an instability towards the creation of large slopes as well
as a diverging persistence length) already occurs for the
g4=0 Siegert-Plischke diffusion model as well as for the
linear equation,
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in d =2 and 3 for which it is known that a=(5—d)/2
and B=(5—d)/8. In d =2, one has a=2 while in d =3
a=1. The existence of a groove instability at saturation
is a consequence of the fact that a self-affine surface
cannot exist with roughness exponent a>1.
In addition we show that this implies anomalous
behavior for the scaling of the height-difference
correlation  function G(x;t)={[h(x;t)—h(0,t)]?).
Finally, we contrast the behavior of these models
with that of the discrete ‘“horizontal diffusion” model
previously studied by Wolf and Villain [3,5], as well
as the g,-0 model of Siegert and Plischke.

For the case of the linear equation (2), we can explicitly
understand the existence of a grooved state by consider-
ing the exact solution for the height-difference correlation
function G (x;t)={[h(x;t)—h(0;¢)]*>) which may be
written (starting from a flat interface at t =0) [8],
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where the cutoffs are A; ~1/L and A, ~1/a, where a is
the short length-scale cutoff and L is the system size.
Changing variables to ¥ = kx, this may be rewritten,
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For ¢t /L*>>1, the exponential may be neglected, and for
the case x /L <<1<<x /a, limits of the integral may be
taken to be zero and <o, assuming that the integral con-
verges. One thus has G (x; o )~x2*~x>"%in agreement
with the general expression for a. For d =2 and 3 di-
mensions, however, the integral diverges at u =0 so that
this is not the case. In particular, for d =2 one obtains
G(x;o)~Lx% while for d=3 one obtains
G(x;0)~x%n(L /a). From inspection of Eq. (4) one
also obtains in the early-time regime x* <<kt <<L*,
G(x;t)~t"*x? in d=2, and G(x;t)~In(t/x*)x? in
d =3. Thus, for d =2 and 3 the scaling of the correlation
function G (x ; ) disagrees with the known scaling of the
saturation width as a function of system size, which is al-
ready a sign that the surface at saturation is not self-
affine. Our results indicate that in d =2, the surface at
saturation consists essentially of linear pieces with slope
of order +V'L [since the average slope over a distance x
is VG (x)/x], which corresponds essentially to a set of
grooves. Assuming a single groove whose width is the
system size, this implies that the saturation width scales
as LV'L =L*’?, in agreement with the known results for
this case.

For the linear case, the average slope may also be
directly calculated in d =2 as
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In d =3 one obtains ((VAh)*)~In(L) at saturation and
~1In(z) at early time. Inspection of Eq. (4) also indicates
that after a time ¢ in d =2 the scale over which the
“linear” behavior [G(x)~x2] of the surface occurs
grows as x| ~t1/4, Thus one may conclude that a crude
description of the interface at time ¢ is that it consists of
grooves of width x, ~!/4, and slope #'/%, so that the sur-
face width grows as t3/® as expected. As time goes on,
these grooves coarsen and become steeper until finally at
saturation one has a single groove of slope VL.

The fact that there is a single groove at saturation for
the linear equation may be seen more clearly by consider-
ing the correlation function of the slope m =Vh at satu-
ration,

Gpm(x)={[m (0)—m (x)]*)
~x ind=2,

~In(x) ind=3 for x/L <<1. (6)

Thus, in d=2, one has G,,,(x)/{m?)=x/L
[ ~In(x)/In(L) in d =3], which implies an orientational

persistence length at saturation £, ~L. One may also

calculate the product correlation function
G (x)={(m (0)m (x)) at saturation,
G, m(x)~L for x/L <1, (7a)
G, (x)—0 for x /L =0.78 . (7b)

In d =3 one obtains G,,,,(x)~In(L /x). The last result
[Eq. (7b)] is obtained for the case of periodic boundary
conditions in d =2 by converting the integral for G,,,, (x)
to a discrete sum over k and summing numerically [9].
Thus, as already stated, there is an orientational per-
sistence length at saturation of order L, corresponding to
a single groove. This is in contradiction to the statement
(made by Golubovic and Bruinsma [10] and again by
Golubovic and Karunasiri [11]) that in the steady-state
there is a persistence length which depends on D and « as
Ep~k/D (or in d =3 as e*/P). This statement was made
under the assumption that the slope is of order 1, which
is not the case for large L at late times.

Finally, we point out that once the groove is formed it
may “move.” This is analogous to the Goldstone mode
described in Ref. [7]. Specifically, one may calculate the
correlation function G, () in the steady-state
(kt'>>L*) ind =2,

G, (t)={m(x,t")m(x,t'+1t)) <L exp(—«t /L*)
for kt /L*>>1. (8)
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The fact that G,,,,(t) goes to zero for kt /L*>>1 is due to
the motion of the groove. A similar result may be ob-
tained in d =3.

In order to test these predictions and obtain a clear
picture of the interface in models with horizontal surface
diffusion, we have numerically integrated Eq. (2) in d =2
and 3, using a finite-difference method on a lattice (k=1,
D =0.1, lattice spacing Ax =1, and time-step Az =0.01)
starting from a flat interface at t =0. Figure 1 shows the
development of the groove as well as the final single
groove at saturation for a system of size L =128 in d =2.
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FIG. 1. Interface profile obtained from numerical solution of
Eq. (2) with D =0.1, k=1.0, L =128, at time ¢ =10.0. Inset
shows snapshot of single groove formed at time ¢ = 100 000.
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FIG. 2. Correlation function G(x)={[h(x)—h(0)]?) for
Eq. (2) at “early time” for L =1024, averaged from ¢ =10000 to
20000. Fit to linear region has slope 1.9. Inset shows interface
at ¢t =20000.

Figure 2 shows the correlation function at “early” time
for a larger system (L =1024) while the inset shows the
corresponding picture of the interface. As predicted, the
correlation function G(x) scales approximately as x?2
(rather than x?) at early-time as well as in the late-time
grooved state. Figure 3 shows the surface obtained from
numerical integration of Eq. (2) in d =3 for a system of
size 32X 32 at late time. We again see that the steady-
state surface appears to consist essentially of a single
groove, although this case is somewhat marginal.

We have also conducted long-time simulations of the
g4=0 version of the Siegert-Plischke model in d =1+1
dimensions. Figure 4 shows a snapshot of the surface
configuration for a system of size L =128 at
t =128X10°% As can be seen from the figure, there is a
well-defined groove whose width is of the order of the
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FIG. 3. Picture of interface obtained from numerical simula-
tion of Eq. (2) in d =3 with L =32 showing a macroscopic
‘“groove” at late time ¢ =10 000.

FIG. 4. Snapshot of interface profile for Siegert-Plischke
model at t =128X 10° in d =2 with g,=0.0, 7=0.1, 8J =0.01,
and L =128. Inset shows snapshot for Wolf-Villain model with
L=128att=3.2X10°

system size as predicted. The inset shows a similar
snapshot at late time for the Wolf-Villain model. In this
case, however, the interface has much larger fluctuations
and unlike our predictions for Eq. (2), the width of the
groove is significantly less than the system size. In this
regard we note that while previous data for the scaling
behavior of the interface width had suggested [3,4] that
this model is in the same universality class as Eq. (2), re-
cent work [12,13] indicates that it actually has a small
but finite surface-tension term vV2h in addition to the
V4h term. Thus the existence of a crossover from the V*h
to the V?h (Edwards-Wilkinson) [14] universality class
(which has no groove since a < 1) at large length scales
may account for the large fluctuations observed in the in-
set of Eq. 4.

We have also numerically simulated the nonlinear
equation [4,6],
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for which it is known that a=(5—d)/3. Ind =2, a=1
which is marginal. Figure 5 shows the steady-state
configuration at two successive times after saturation, in-
dicating the existence of a macroscopic groove as well in
this case.

Finally, as a comparison between our results and those
of Ref. [7], we show in Fig. 6 scaled plots of the surface
profiles (averaged over several runs, and shifted so that
the maximums are at the same location in x) for three
different models including the nonlinear model of Siegert
and Plischke [7]. As can be seen from the figure, the
three grooves all have roughly the same shape. However,
for the nonlinear (g,70) Siegert-Plischke model there is
a fairly sharp cusp or slope-discontinuity at the bottom of
the groove. This sharp discontinuity is due to a deter-
ministic instability which occurs in this model and which
accounts for the observation of pronounced oscillations
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FIG. 5. Steady-state interface from numerical solution of Eq.
9) (k=1.0, A,=—1.0, D =0.1) for system size L =128 show-
ing groove at two different times (# =200000 and 600000) in
saturation regime.

and lack of scaling of the structure factor S (k) [7]. Such
an instability does not occur for the other two models
and therefore the bottom of the groove is more rounded
and oscillations in S(k) either are not present or are
significantly reduced for these models.

In conclusion, we have shown that the existence of a
macroscopic grooved state with an instability toward the
creation of regions of large slope and a diverging per-
sistence length is not a specific feature of the nonlinear
model studied in Ref. [7], but also occurs for the linear
Eq. (2) as well as the g, =0 version of this model. How-
ever, the lack of scaling of the structure factor S(k) is a
specific feature of the g,70 model and does not occur
for the models discussed here. The existence of a macro-
scopic grooved state is most likely due to the fact that in
all of these models the full diffusion along the surface is
not taken into account.

In the case of the linear model Eq. (2) we have analyti-
cally and numerically demonstrated the existence of a
macroscopic groove whose slope scales as V'L (V'InL ) in
d =2 (3) and of a persistence length which diverges with
increasing L at saturation. In addition, we have demon-
strated the existence of anomalous behavior for the scal-
ing of the height-difference correlation function G (x).
As we have pointed out, this is expected to occur for any
model with roughness exponent a=>1. For the Wolf-
Villain model, however, the situation appears to be
different since the measured value of a is greater than 1
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FIG. 6. Averaged scaled surface profiles for three different
models at late time. Curve labeled Eq. (2) is linear model, aver-
aged over 500 correlation times for L =32. Curve labeled g, =0
is Siegert-Plischke model with g,=0 and L =64 averaged over
20 runs. Lowest curve is for nonlinear Siegert-Plischke model
with g,=1.0, 7=0.1, 8J/=0.01, and L =64, averaged over 20
runs.

while the persistence length does not diverge with system
size. This is an indication that, as suggested in Refs. [12]
and [13], this model is crossing over to Edwards-
Wilkinson (a < 1) scaling behavior at large length scales.

We note that recent suggestions [4,6] for the interface
growth equation appropriate for molecular-beam epitaxy
include the existence of a nonlinear term of the form
V2(|VA|?) as in Eq. (9) which results in a value of a less
than 1 in the physically relevant case d =3. Thus a
groove instability is not expected in this case. However,
the derivation of this equation is based on the assumption
of small slopes, and does not include the full nonlineari-
ties due to curvature included in Eq. (1). Thus, it is still
not clear whether or not this equation is really valid in
the late-time regime for MBE growth. If, in fact, the
nonlinear terms do lead to @ =1 in d =3, then the solid-
on-solid approximation may not be valid either, as
overhangs may be expected to form.
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